• DocumentCode
    3136136
  • Title

    Elman neural networks for dynamic modeling of epileptic EEG

  • Author

    Kannathal, N. ; Puthusserypady, Sadasivan K. ; Min, Lim Choo

  • Author_Institution
    Dept. of ECE, Nat. Univ. of Singapore
  • fYear
    2006
  • fDate
    Aug. 30 2006-Sept. 3 2006
  • Firstpage
    6145
  • Lastpage
    6148
  • Abstract
    In this paper, autoregressive modeling technique and neural network based modeling techniques are used to model and simulate electroencephalogram (EEG) signals. EEG signal modeling is used as a tool to identify pathophysiological EEG changes potentially useful in clinical diagnosis. The normal, background and epileptic EEG signals are modeled and the dynamical properties of the actual and modeled signals are compared. Chaotic invariants like correlation dimension (D2 ), largest Lyapunov exponent (lambda1, Hurst exponent (H) and Kolmogorov entropy (K) are used to characterize the dynamical properties of the actual and modeled signals. Our study showed that the dynamical properties of the EEG signal modeled using neural network (NN) techniques are very similar to that of the signal
  • Keywords
    autoregressive processes; backpropagation; chaos; electroencephalography; medical diagnostic computing; medical signal processing; neural nets; neurophysiology; signal reconstruction; Elman neural network; Hurst exponent; Kolmogorov entropy; Lyapunov exponent; autoregressive modeling technique; chaotic invariants; clinical diagnosis; dynamic modeling; epileptic EEG signal modeling; pathophysiological EEG changes; signal reconstruction; two-layer backpropagation network; Biological neural networks; Brain modeling; Chaos; Cities and towns; Electroencephalography; Epilepsy; Neural networks; Nonlinear dynamical systems; Testing; USA Councils; Autoregressive modeling; EEG; epilepsy; neural networks;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Engineering in Medicine and Biology Society, 2006. EMBS '06. 28th Annual International Conference of the IEEE
  • Conference_Location
    New York, NY
  • ISSN
    1557-170X
  • Print_ISBN
    1-4244-0032-5
  • Electronic_ISBN
    1557-170X
  • Type

    conf

  • DOI
    10.1109/IEMBS.2006.259990
  • Filename
    4463211