DocumentCode :
3136136
Title :
Elman neural networks for dynamic modeling of epileptic EEG
Author :
Kannathal, N. ; Puthusserypady, Sadasivan K. ; Min, Lim Choo
Author_Institution :
Dept. of ECE, Nat. Univ. of Singapore
fYear :
2006
fDate :
Aug. 30 2006-Sept. 3 2006
Firstpage :
6145
Lastpage :
6148
Abstract :
In this paper, autoregressive modeling technique and neural network based modeling techniques are used to model and simulate electroencephalogram (EEG) signals. EEG signal modeling is used as a tool to identify pathophysiological EEG changes potentially useful in clinical diagnosis. The normal, background and epileptic EEG signals are modeled and the dynamical properties of the actual and modeled signals are compared. Chaotic invariants like correlation dimension (D2 ), largest Lyapunov exponent (lambda1, Hurst exponent (H) and Kolmogorov entropy (K) are used to characterize the dynamical properties of the actual and modeled signals. Our study showed that the dynamical properties of the EEG signal modeled using neural network (NN) techniques are very similar to that of the signal
Keywords :
autoregressive processes; backpropagation; chaos; electroencephalography; medical diagnostic computing; medical signal processing; neural nets; neurophysiology; signal reconstruction; Elman neural network; Hurst exponent; Kolmogorov entropy; Lyapunov exponent; autoregressive modeling technique; chaotic invariants; clinical diagnosis; dynamic modeling; epileptic EEG signal modeling; pathophysiological EEG changes; signal reconstruction; two-layer backpropagation network; Biological neural networks; Brain modeling; Chaos; Cities and towns; Electroencephalography; Epilepsy; Neural networks; Nonlinear dynamical systems; Testing; USA Councils; Autoregressive modeling; EEG; epilepsy; neural networks;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Engineering in Medicine and Biology Society, 2006. EMBS '06. 28th Annual International Conference of the IEEE
Conference_Location :
New York, NY
ISSN :
1557-170X
Print_ISBN :
1-4244-0032-5
Electronic_ISBN :
1557-170X
Type :
conf
DOI :
10.1109/IEMBS.2006.259990
Filename :
4463211
Link To Document :
بازگشت