• DocumentCode
    3136255
  • Title

    Binomial linear predictive approach to texture modeling

  • Author

    Becchetti, Claudio ; Campisi, Patrizio

  • Author_Institution
    Infocom Dept., Rome Univ., Italy
  • Volume
    2
  • fYear
    1997
  • fDate
    2-4 Jul 1997
  • Firstpage
    1111
  • Abstract
    We present a parametric texture analysis and synthesis method based on a sparse autoregressive model. The method is aimed at reducing the number of parameters necessary to define the stochastic behavior of a random field representing a given texture. For this purpose, it systematically selects the dominant contributions to the pixel cross-correlation. The method is employed in the first stage of a nonlinear texture model. Dimensional and computational advantages as well as application limits are discussed
  • Keywords
    autoregressive processes; correlation methods; feature extraction; image texture; linear systems; parameter estimation; prediction theory; random processes; binomial linear predictive approach; computational advantages; feature extraction; nonlinear texture model; parametric texture analysis; parametric texture synthesis method; pixel cross-correlation; random field; sparse autoregressive model; stochastic behavior; texture modeling; Autocorrelation; Bit rate; Context modeling; Electronic mail; Minimax techniques; Predictive models; Signal synthesis; Statistical analysis; Stochastic processes; Testing;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Digital Signal Processing Proceedings, 1997. DSP 97., 1997 13th International Conference on
  • Conference_Location
    Santorini
  • Print_ISBN
    0-7803-4137-6
  • Type

    conf

  • DOI
    10.1109/ICDSP.1997.628560
  • Filename
    628560