Title :
MCMC for parameters estimation by Bayesian approach
Author :
Ait Saadi, H. ; Ykhlef, Faycal ; Guessoum, Abderrezak
Author_Institution :
Dept. de l´Electron., Saad Dahlab Univ., Blida, Algeria
Abstract :
This article discusses the parameter estimation for dynamic system by a Bayesian approach associated with Markov Chain Monte Carlo methods (MCMC). The MCMC methods are powerful for approximating complex integrals, simulating joint distributions, and the estimation of marginal posterior distributions, or posterior means. The Metropolis-Hastings algorithm has been widely used in Bayesian inference to approximate posterior densities. Calibrating the proposal distribution is one of the main issues of MCMC simulation in order to accelerate the convergence.
Keywords :
Bayes methods; Markov processes; Monte Carlo methods; inference mechanisms; parameter estimation; Bayesian approach; Bayesian inference; MCMC; Markov Chain Monte Carlo methods; Metropolis-Hastings algorithm; parameter estimation; posterior density approximation; Bayesian methods; Convergence; Estimation; Markov processes; Monte Carlo methods; Noise; Proposals; Bayesian approach; MCMC; MMSE; Metropolis-Hastings; dynamic system; parameters estimation;
Conference_Titel :
Systems, Signals and Devices (SSD), 2011 8th International Multi-Conference on
Conference_Location :
Sousse
Print_ISBN :
978-1-4577-0413-0
DOI :
10.1109/SSD.2011.5767395