DocumentCode :
3138230
Title :
MCMC for parameters estimation by Bayesian approach
Author :
Ait Saadi, H. ; Ykhlef, Faycal ; Guessoum, Abderrezak
Author_Institution :
Dept. de l´Electron., Saad Dahlab Univ., Blida, Algeria
fYear :
2011
fDate :
22-25 March 2011
Firstpage :
1
Lastpage :
6
Abstract :
This article discusses the parameter estimation for dynamic system by a Bayesian approach associated with Markov Chain Monte Carlo methods (MCMC). The MCMC methods are powerful for approximating complex integrals, simulating joint distributions, and the estimation of marginal posterior distributions, or posterior means. The Metropolis-Hastings algorithm has been widely used in Bayesian inference to approximate posterior densities. Calibrating the proposal distribution is one of the main issues of MCMC simulation in order to accelerate the convergence.
Keywords :
Bayes methods; Markov processes; Monte Carlo methods; inference mechanisms; parameter estimation; Bayesian approach; Bayesian inference; MCMC; Markov Chain Monte Carlo methods; Metropolis-Hastings algorithm; parameter estimation; posterior density approximation; Bayesian methods; Convergence; Estimation; Markov processes; Monte Carlo methods; Noise; Proposals; Bayesian approach; MCMC; MMSE; Metropolis-Hastings; dynamic system; parameters estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Systems, Signals and Devices (SSD), 2011 8th International Multi-Conference on
Conference_Location :
Sousse
Print_ISBN :
978-1-4577-0413-0
Type :
conf
DOI :
10.1109/SSD.2011.5767395
Filename :
5767395
Link To Document :
بازگشت