Title :
A Variational Bayesian Inference Framework for Multiview Depth Image Enhancement
Author :
Rana, Pravin ; Taghia, Jalil ; Flierl, Markus
Author_Institution :
Sch. of Electr. Eng., KTH R. Inst. of Technol., Stockholm, Sweden
Abstract :
In this paper, a general model-based framework for multiview depth image enhancement is proposed. Depth imagery plays a pivotal role in emerging free-viewpoint television. This technology requires high quality virtual view synthesis to enable viewers to move freely in a dynamic real world scene. Depth imagery of different viewpoints is used to synthesize an arbitrary number of novel views. Usually, the depth imagery is estimated individually by stereo-matching algorithms and, hence, shows lack of inter-view consistency. This inconsistency affects the quality of view synthesis negatively. This paper enhances the inter-view consistency of multiview depth imagery by using a variational Bayesian inference framework. First, our approach classifies the color information in the multiview color imagery. Second, using the resulting color clusters, we classify the corresponding depth values in the multiview depth imagery. Each clustered depth image is subject to further sub clustering. Finally, the resulting mean of the sub-clusters is used to enhance the depth imagery at multiple viewpoints. Experiments show that our approach improves the quality of virtual views by up to 0.25 dB.
Keywords :
Bayes methods; image classification; image colour analysis; image enhancement; image matching; pattern clustering; stereo image processing; variational techniques; color clusters; color information classification; depth values classification; dynamic real world scene; free-viewpoint television; general model-based framework; high quality virtual view synthesis; interview consistency; multiview color imagery; multiview depth image enhancement; stereo-matching algorithms; subclustering; variational Bayesian inference framework; Bayesian methods; Clustering algorithms; Image color analysis; Image enhancement; Optimization; Transform coding; Visualization; Gaussian mixture model; Multiview video; depth enhancement; variational Bayesian inference;
Conference_Titel :
Multimedia (ISM), 2012 IEEE International Symposium on
Conference_Location :
Irvine, CA
Print_ISBN :
978-1-4673-4370-1
DOI :
10.1109/ISM.2012.44