DocumentCode :
314002
Title :
Linear programming bounds for codes in infinite projective spaces
Author :
Boyvalenkov, Peter ; Danev, Danyo ; Mitradjieva, Maria
Author_Institution :
Inst. of Math., Bulgarian Acad. of Sci., Sofia, Bulgaria
fYear :
1997
fDate :
29 Jun-4 Jul 1997
Firstpage :
81
Abstract :
We develop a technique for improving the universal linear programming bounds (ULPB) on the cardinality and the minimum distance of codes in infinite projective spaces FPn-1 (F=R,C,H). We introduce test functions Pj(FPn-1,ρ) having the property that Pj(FPn-1,ρ)<0 for some j if and only if the corresponding ULPB can be further improved by linear programming
Keywords :
codes; linear programming; set theory; Levenshtein bounds; cardinality; finite set; infinite projective spaces; minimum distance; polynomial; test functions; universal linear programming bounds; Artificial intelligence; Contracts; Extraterrestrial measurements; Jacobian matrices; Lattices; Linear programming; Mathematics; Polynomials; Testing; Upper bound;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory. 1997. Proceedings., 1997 IEEE International Symposium on
Conference_Location :
Ulm
Print_ISBN :
0-7803-3956-8
Type :
conf
DOI :
10.1109/ISIT.1997.612996
Filename :
612996
Link To Document :
بازگشت