Title :
A model of cerebellar learning for control of arm movements using muscle synergies
Author :
Fagg, Andrew H. ; Sitkoff, Nathan ; Barto, Andrew G. ; Houk, James C.
Author_Institution :
Dept. of Comput. Sci., Massachusetts Univ., Amherst, MA, USA
Abstract :
Biological control systems have long been studied as possible inspiration for the construction of robotic controllers. The cerebellum is known to be involved in the production and learning of smooth, coordinated movements. In this paper, we present a model of cerebellar control of a muscle-actuated, two-link, planar arm. The model learns in a trial-and-error fashion to generate the appropriate sequence of motor signals that accurately bring the arm to a specified target. The motor signals produced by the cerebellum are specified in muscle synergy space. When the cerebellum fails to bring the arm to the target, an extra-cerebellar module performs low-quality corrective movements, from which the cerebellum updates its program. In learning to perform the task, the cerebellum constructs an implicit inverse model of the plant. This model uses a combination of delayed sensory signals and recently-generated motor commands to compute the new output motor signal
Keywords :
learning systems; manipulators; motion control; arm movements; cerebellar learning; delayed sensory signals; implicit inverse model; low-quality corrective movements; motor signals; muscle synergies; muscle-actuated two-link planar arm; robotic controllers; smooth coordinated movements; trial-and-error learning; Biological control systems; Biological system modeling; Brain modeling; Control systems; Inverse problems; Muscles; Production; Robot control; Robot kinematics; Signal generators;
Conference_Titel :
Computational Intelligence in Robotics and Automation, 1997. CIRA'97., Proceedings., 1997 IEEE International Symposium on
Conference_Location :
Monterey, CA
Print_ISBN :
0-8186-8138-1
DOI :
10.1109/CIRA.1997.613831