DocumentCode :
3145309
Title :
EEG spatial decoding with shrinkage optimized directed information assessment
Author :
Chen, Xu ; Syed, Zeeshan ; Hero, Alfred
Author_Institution :
Univ. of Michigan, Ann Arbor, MI, USA
fYear :
2012
fDate :
25-30 March 2012
Firstpage :
577
Lastpage :
580
Abstract :
This paper proposes an approach to infer neural interactions from EEG data using a James-Stein estimator of directed information called shrinkage optimized directed information assessment (SODA). SODA uses shrinkage regularization on empirical histograms to deal with the high dimensionality of multi-channel EEG signals and the small sizes of many real-world datasets. It is designed to make few a priori assumptions, and can handle both non-linear and non-Gaussian flows across electrode sites. The use of James-Stein shrinkage allows the SODA algorithm to achieve higher sensitivity to directed neural interactions for a given specificity. We augment this through a central limit theorem-based approach that can assess the statistical significance of each discovered interaction. When evaluated on brain computer interface EEG motor activity data the neural decoding obtained using SODA outperformed several state-of-the-art approaches including Granger causality, MI, unregularized directed information, and spatial coherence. Our results show that SODA localizes 30% more directed interactions in regions that are consistent with Brodmann functional areas of motor activity.
Keywords :
brain-computer interfaces; electroencephalography; medical signal processing; neurophysiology; BCI EEG motor activity data; EEG data; EEG spatial decoding; James-Stein estimator; James-Stein shrinkage; SODA algorithm; brain computer interface; central limit theorem based approach; directed neural interactions; electrode sites; empirical histograms; multichannel EEG signal dimensionality; neural decoding; nonGaussian flows; nonlinear flows; shrinkage optimized directed information assessment; shrinkage regularization; Electrodes; Electroencephalography; Feature extraction; Heating; Histograms; Joints; Testing; James Stein estimators; directional interaction graph; information flow; small sample size;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on
Conference_Location :
Kyoto
ISSN :
1520-6149
Print_ISBN :
978-1-4673-0045-2
Electronic_ISBN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2012.6287945
Filename :
6287945
Link To Document :
بازگشت