Title :
An ionization cooling channel for muon beams based on alternating solenoids
Author :
Gallardo, Juan C. ; Fernow, Richard C. ; Kirk, Harold G. ; Palmer, Robert B. ; Lebrun, Paul ; Moretti, Alfred ; Tollestrup, Alvin V. ; Kaplan, Daniel M. ; Fukui, Yasuo
Author_Institution :
Brookhaven Nat. Lab., Upton, NY, USA
Abstract :
The muon collider requires intense, cooled muon bunches to reach the required luminosity. Due to the limited lifetime of the muon, the cooling process must take place very rapidly. Ionization cooling seems to be our only option, given the large emittances of the muon beam from pion decay. However, this ionization cooling method has been found quite difficult to implement in practice. We describe a scheme based on the use of liquid hydrogen absorbers followed by RF cavities (“pillbox” or “open iris” type), embedded in a transport lattice based on high field solenoids. These solenoidal fields are reversed periodically in order to suppress the growth of the canonical angular momentum. This channel has been simulated in detail with independent codes, featuring conventional tracking in e.m. fields and detailed simulation of multiple scattering and straggling in the the absorbers and windows. These calculations show that the 15 Tesla lattice cools in 6D phase space by a factor ≈2 over a distance of 20 m
Keywords :
beam handling equipment; colliding beam accelerators; muons; storage rings; 15 T; RF cavities; alternating solenoids; canonical angular momentum; cooled muon bunches; cooling process; high field solenoids; ionization cooling channel; liquid hydrogen absorbers; muon beams; muon collider; transport lattice; Computational modeling; Cooling; Hydrogen; Ionization; Lattices; Linear accelerators; Magnetic materials; Mesons; Particle scattering; Solenoids;
Conference_Titel :
Particle Accelerator Conference, 1999. Proceedings of the 1999
Conference_Location :
New York, NY
Print_ISBN :
0-7803-5573-3
DOI :
10.1109/PAC.1999.792136