Title :
Track physics model of radiation effects
Author_Institution :
Nebraska Univ., Lincoln, NE, USA
Abstract :
Radiation effects induced by heavy ions in many materials with diverse end points are well described by the conceptual structure and equations of track physics, first developed for heavy ion tracks in nuclear emulsions. The model describes scintillators, biological cell inactivation and mutation, radiation chemistry, latent tracks in insulators, the response of resists to heavy ions, and other systems. A detector is taken to be composed of small targets whose response to ionizing radiation is principally to secondary electrons. The response is calibrated through determination of the probability of target (in)activation as a function of the absorbed dose of γ rays. This is then translated into the radial distribution of the probability of target (in)activation about the path of heavy ion through knowledge of the radial distribution of dose from δ rays. Radial integration yields the action cross-section σ, from which the response as a function of fluence of heavy ions is calculated. The author asks whether the track physics model is needed to describe single event upsets, or the effects produced in bulk matter by HZE particles
Keywords :
gamma-ray detection and measurement; ion beam effects; particle track visualisation; particle tracks; γ rays; HZE particles; absorbed dose; action cross-section; biological cell inactivation; heavy ions; insulators; latent tracks; mutation; radiation chemistry; radiation effects; response of resists; scintillators; single event upsets; track physics model; Biological cells; Biological materials; Biological system modeling; Chemistry; Equations; Genetic mutations; Insulation life; Physics; Radiation effects; Target tracking;
Conference_Titel :
Radiation and its Effects on Devices and Systems, 1991. RADECS 91., First European Conference on
Conference_Location :
La Grande-Motte
Print_ISBN :
0-7803-0208-7
DOI :
10.1109/RADECS.1991.213538