• DocumentCode
    3148091
  • Title

    Vectorization of conjugate-gradient methods for large-scale minimization

  • Author

    Navon, I.M. ; Phua, P.K.H. ; Ramamurthy, M.

  • Author_Institution
    Supercomput. Comput. Res. Inst., Florida State Univ., Tallahassee, FL, USA
  • fYear
    1988
  • fDate
    14-18 Nov 1988
  • Firstpage
    410
  • Lastpage
    418
  • Abstract
    Vectorization techniques are applied to the nonlinear conjugate-gradient method for large-scale unconstrained minimization. Computational results are presented for a robust limited-memory quasi-Newton-like conjugate-gradient algorithm applied to meteorological problems. The vectorization results in speedups up to a factor of 21 compared to the performance of the scalar code, when nonlinear functions of 104-105 variables are minimized. A sizable reduction in the CPU time required for the minimization of large-scale nonlinear functions is obtained, showing the advantages of the approach
  • Keywords
    geophysics computing; minimisation; nonlinear programming; parallel algorithms; conjugate-gradient methods; large-scale minimization; meteorological problems; nonlinear functions; vectorization; Computer science; Design methodology; Finite difference methods; Geophysics computing; Large-scale systems; Linear systems; Mathematics; Meteorology; Minimization methods; Supercomputers;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Supercomputing '88. [Vol.1]., Proceedings.
  • Conference_Location
    Orlando, FL
  • Print_ISBN
    0-8186-0882-X
  • Type

    conf

  • DOI
    10.1109/SUPERC.1988.44679
  • Filename
    44679