Title :
Neighbor embedding based single-image super-resolution using Semi-Nonnegative Matrix Factorization
Author :
Bevilacqua, Marco ; Roumy, Aline ; Guillemot, Christine ; Morel, Marie-Line Alberi
Author_Institution :
IRISA-INRIA, Rennes, France
Abstract :
This paper describes a novel method for single-image super-resolution (SR) based on a neighbor embedding technique which uses Semi-Nonnegative Matrix Factorization (SNMF). Each low-resolution (LR) input patch is approximated by a linear combination of nearest neighbors taken from a dictionary. This dictionary stores low-resolution and corresponding high-resolution (HR) patches taken from natural images and is thus used to infer the HR details of the super-resolved image. The entire neighbor embedding procedure is carried out in a feature space. Features which are either the gradient values of the pixels or the mean-subtracted luminance values are extracted from the LR input patches, and from the LR and HR patches stored in the dictionary. The algorithm thus searches for the K nearest neighbors of the feature vector of the LR input patch and then computes the weights for approximating the input feature vector. The use of SNMF for computing the weights of the linear approximation is shown to have a more stable behavior than the use of LLE and lead to significantly higher PSNR values for the super-resolved images.
Keywords :
approximation theory; dictionaries; embedded systems; feature extraction; gradient methods; image resolution; matrix decomposition; vectors; HR patch; K nearest neighbor; LLE; LR input patch extraction; PSNR; SNMF; SR; dictionary; high-resolution patch; input feature vector; linear combination approximation; low-resolution input patch extraction; mean-subtracted luminance value; neighbor embedding based single-image superresolution; pixels gradient value; seminonnegative matrix factorization; superresolved image; Dictionaries; Feature extraction; Image reconstruction; Image resolution; PSNR; Strontium; Vectors; Semi-nonnegative Matrix Factorization; Super-resolution; neighbor embedding;
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on
Conference_Location :
Kyoto
Print_ISBN :
978-1-4673-0045-2
Electronic_ISBN :
1520-6149
DOI :
10.1109/ICASSP.2012.6288125