DocumentCode :
3153116
Title :
Intelligent progression for anomaly intrusion detection
Author :
Marimuthu, A. ; Shanmugam, A.
Author_Institution :
Dept. of Comput. Sci. Eng., Vinayaka Mission´´s Univ., Coimbatore
fYear :
2008
fDate :
21-22 Jan. 2008
Firstpage :
261
Lastpage :
265
Abstract :
This paper describes a technique of combining K-Means clustering (KMC) and genetic algorithm (GA) to network intrusion detection systems (IDSs). A brief overview of the intrusion detection system, K-Means clustering, genetic algorithm, and related detection techniques is presented. Parameters and evolution process for GA are discussed in detail. Unlike other implementations of the same problem, this implementation combines K-Means clustering and genetic algorithm resulting in a better result to generate rules in IDS. This is helpful for identification of complex anomalous behaviors. This work is focused on the TCP/IP network protocols.
Keywords :
genetic algorithms; pattern clustering; security of data; transport protocols; TCP/IP network protocols; evolution process; genetic algorithm; intrusion detection systems; k-means clustering; parameter process; Informatics; Intrusion detection; Machine intelligence;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Applied Machine Intelligence and Informatics, 2008. SAMI 2008. 6th International Symposium on
Conference_Location :
Herlany
Print_ISBN :
978-1-4244-2105-3
Electronic_ISBN :
978-1-4244-2106-0
Type :
conf
DOI :
10.1109/SAMI.2008.4469180
Filename :
4469180
Link To Document :
بازگشت