DocumentCode :
3154467
Title :
Usage of distinctive classifiers for text categorization using distributional features
Author :
Mubeen, Sayyada ; Qaseem, Mohammad S. ; Govardhan, Dr A.
Author_Institution :
Eng. Sci., Kite Coll. of Prof., Hyderabad, India
fYear :
2011
fDate :
16-18 Dec. 2011
Firstpage :
1
Lastpage :
5
Abstract :
Predefined categories can be assigned to the natural language text using Text categorization. This paper explores the effect of other types of values, which express the distribution of a word in the document. These values are called distributional features. These different features are calculated for Window passage using distinctive classifiers. The classifier which gives the more accurate result is selected for categorization. Experiments show that the distributional features are useful for text categorization. These results are simulated using Weka tool.
Keywords :
natural language processing; pattern classification; text analysis; Weka tool; distinctive classifier; distributional feature; natural language text; text categorization; window passage; word distribution; Arrays; Frequency measurement; Learning systems; Support vector machines; Text categorization; Training; Writing; Distributional features; Ensemble Techniques; Reuters; Text categorization; Text mining;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
India Conference (INDICON), 2011 Annual IEEE
Conference_Location :
Hyderabad
Print_ISBN :
978-1-4577-1110-7
Type :
conf
DOI :
10.1109/INDCON.2011.6139385
Filename :
6139385
Link To Document :
بازگشت