Title :
Heuristic rational models in social networks
Author :
Eksin, Ceyhun ; Ribeiro, Alejandro
Author_Institution :
Dept. of Electr. & Syst. Eng., Univ. of Pennsylvania, Philadelphia, PA, USA
Abstract :
A network of social agents wants to minimize a global cost given by a sum of local terms involving convex nonlinear functions of self and neighboring variables. Agents update their variables at random times according to a random heuristic rule that is on average optimal with respect to the local cost given values of neighboring agents. When all agents apply heuristic rational optimization, convergence result shows that global cost visits a neighborhood of optimal cost infinitely often with probability 1. An exponential probability bound on the worst deviation from optimality between visits to near optimal operating points is also presented. Models of opinion propagation and voting are cast in the language of heuristic rational optimization. Numerical results are presented for the opinion propagation model on both geometric and small-world network structures.
Keywords :
costing; exponential distribution; multi-agent systems; nonlinear functions; optimisation; social networking (online); convex nonlinear functions; exponential probability; geometric network structures; global cost; heuristic rational models; heuristic rational optimization; local terms; neighboring variables; opinion propagation model; optimal cost; random heuristic rule; self variables; small-world network structures; social agents; social networks; voting model; Convergence; Level set; Minimization; Numerical models; Optimization; Social network services; Distributed network optimization; social networks;
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on
Conference_Location :
Kyoto
Print_ISBN :
978-1-4673-0045-2
Electronic_ISBN :
1520-6149
DOI :
10.1109/ICASSP.2012.6288565