• DocumentCode
    315749
  • Title

    A computation of bifurcation parameter values for limit cycles

  • Author

    Ueta, Tetsushi ; Kawakami, Hiroshi ; Yoshinaga, Tetsuya ; Katsuta, Yuuji

  • Author_Institution
    Dept. of Inf. Sci. & Intelligent Syst., Tokushima Univ., Japan
  • Volume
    2
  • fYear
    1997
  • fDate
    9-12 Jun 1997
  • Firstpage
    801
  • Abstract
    This paper describes a new computational method to obtain the bifurcation parameter value of limit cycles in nonlinear autonomous systems. Local bifurcations, e.g., tangent, period-doubling and Neimark-Sacker bifurcations, can be calculated by using the characteristic equation for a fixed point of the Poincare mapping. Conventionally a period of the limit cycle is not used explicitly since the Poincare mapping is needed whether the orbit reaches a cross-section or not. In our method, we regard the period as an independent variable for Newton´s method and obtain location of a fixed point, the bifurcation parameter and the period simultaneously. Although the number of variables increases, the Jacobi matrix becomes simple and the method converges rapidly against the conventional method
  • Keywords
    Jacobian matrices; Poincare mapping; bifurcation; chaos; coupled circuits; limit cycles; neural nets; nonlinear network analysis; Jacobi matrix; Neimark-Sacker bifurcations; Poincare mapping; bifurcation parameter values; characteristic equation; computational method; limit cycles; nonlinear autonomous systems; period-doubling bifurcations; tangent bifurcations; Bifurcation; Computational intelligence; Coupling circuits; Equations; Information science; Intelligent systems; Jacobian matrices; Limit-cycles; Newton method; Simultaneous localization and mapping;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Circuits and Systems, 1997. ISCAS '97., Proceedings of 1997 IEEE International Symposium on
  • Print_ISBN
    0-7803-3583-X
  • Type

    conf

  • DOI
    10.1109/ISCAS.1997.621834
  • Filename
    621834