• DocumentCode
    3166160
  • Title

    Fractional Noether´s theorem with classical and Riemann-Liouville derivatives

  • Author

    Frederico, G.S.F. ; Torres, Delfim F. M.

  • Author_Institution
    Gregorio Semedo Univ., Luanda, Angola
  • fYear
    2012
  • fDate
    10-13 Dec. 2012
  • Firstpage
    6885
  • Lastpage
    6890
  • Abstract
    We prove a Noether type symmetry theorem to fractional problems of the calculus of variations with classical and Riemann-Liouville derivatives. As result, we obtain constants of motion (in the classical sense) that are valid along the mixed classical/fractional Euler-Lagrange extremals. Both Lagrangian and Hamiltonian versions of the Noether theorem are obtained. Finally, we extend our Noether´s theorem to more general problems of optimal control with classical and Riemann-Liouville derivatives.
  • Keywords
    optimal control; Hamiltonian version; Lagrangian version; Noether type symmetry theorem; Riemann-Liouville derivative; fractional Noether theorem; mixed classical-fractional Euler-Lagrange extremal; optimal control; Educational institutions; Equations; Fractional calculus; Integral equations; Optimal control; Euler-Lagrange equations; Noether´s theorem; calculus of variations; fractional derivatives; invariance; optimal control;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Decision and Control (CDC), 2012 IEEE 51st Annual Conference on
  • Conference_Location
    Maui, HI
  • ISSN
    0743-1546
  • Print_ISBN
    978-1-4673-2065-8
  • Electronic_ISBN
    0743-1546
  • Type

    conf

  • DOI
    10.1109/CDC.2012.6426162
  • Filename
    6426162