DocumentCode :
316724
Title :
Matrix decomposition representation of fast DCT algorithms
Author :
Wu, H.R. ; Qiu, B. ; Man, Zhihong
Author_Institution :
Dept. of Digital Syst., Monash Univ., Clayton, Vic., Australia
Volume :
1
fYear :
1997
fDate :
2-4 Jul 1997
Firstpage :
341
Abstract :
This paper describes the matrix decomposition of two popular 1D DCT algorithms. In this form, the link and differences in the computational structure between the two algorithms are revealed and the vector-radix algorithms based on Lee´s (1984) and Hou´s (1987) 1D fast algorithms for multidimensional DCTs are readily formulated using the properties of the Kronecker product
Keywords :
discrete cosine transforms; matrix decomposition; signal processing; 1D DCT algorithms; Kronecker product; computational structure; fast DCT algorithms; matrix decomposition representation; multidimensional DCT; signal processing; vector-radix algorithms; Australia; Digital systems; Discrete cosine transforms; Electrical capacitance tomography; Matrix decomposition; Multidimensional signal processing; Multidimensional systems; Signal processing algorithms; Telephony; Video compression;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Digital Signal Processing Proceedings, 1997. DSP 97., 1997 13th International Conference on
Conference_Location :
Santorini
Print_ISBN :
0-7803-4137-6
Type :
conf
DOI :
10.1109/ICDSP.1997.628092
Filename :
628092
Link To Document :
بازگشت