DocumentCode :
3168445
Title :
Analysis of streaming social networks and graphs on multicore architectures
Author :
Riedy, Jason ; Meyerhenke, Henning ; Bader, David A. ; Ediger, David ; Mattson, Timothy G.
Author_Institution :
Georgia Inst. of Technol., Atlanta, GA, USA
fYear :
2012
fDate :
25-30 March 2012
Firstpage :
5337
Lastpage :
5340
Abstract :
Analyzing static snapshots of massive, graph-structured data cannot keep pace with the growth of social networks, financial transactions, and other valuable data sources. We introduce a framework, STING (Spatio-Temporal Interaction Networks and Graphs), and evaluate its performance on multicore, multisocket Intel®-based platforms. STING achieves rates of around 100 000 edge updates per second on large, dynamic graphs with a single, general data structure. We achieve speedups of up to 1000× over parallel static computation, improve monitoring a dynamic graph´s connected components, and show an exact algorithm for maintaining local clustering coefficients performs better on Intel-based platforms than our earlier approximate algorithm.
Keywords :
data structures; graph theory; multiprocessing systems; parallel architectures; social networking (online); STING framework; data sources; dynamic graph connected components; financial transactions; graph-structured data; local clustering coefficients; multicore architectures; multicore multisocket Intel-based platforms; spatiotemporal interaction networks and graph framework; streaming social network analysis; Algorithm design and analysis; Approximation algorithms; Data structures; Heuristic algorithms; Kernel; Monitoring; Social network services; graph analysis; parallel processing; social network analysis; streaming data;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on
Conference_Location :
Kyoto
ISSN :
1520-6149
Print_ISBN :
978-1-4673-0045-2
Electronic_ISBN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2012.6289126
Filename :
6289126
Link To Document :
بازگشت