DocumentCode :
3174792
Title :
Neuro-Fuzzy Modelling Using a Logistic Discriminant Tree
Author :
Hametner, Christoph ; Jakubek, Stefan
Author_Institution :
Vienna Univ. of Technol., Vienna
fYear :
2007
fDate :
9-13 July 2007
Firstpage :
864
Lastpage :
869
Abstract :
An algorithm for nonlinear static and dynamic identification using Takagi-Sugeno fuzzy models is presented. For practical applications the incorporation of prior knowledge and the interpretability of the local models is of great interest. Using a tree structured algorithm in combination with the distinction between the input arguments for the consequents and for the premises the nonlinear optimisation is performed in an efficient way. The axis oblique decomposition of the partition space is based on an expectation-maximisation (EM) algorithm. Simulation results demonstrate the capabilities of the proposed concept.
Keywords :
expectation-maximisation algorithm; fuzzy neural nets; identification; nonlinear programming; nonlinear systems; trees (mathematics); Takagi-Sugeno fuzzy models; expectation-maximisation algorithm; logistic discriminant tree; neuro-fuzzy modelling; nonlinear optimisation; nonlinear static-dynamic identification; Cities and towns; Clustering algorithms; Fuzzy control; Fuzzy systems; Logistics; Mechatronics; Nonlinear systems; Partitioning algorithms; Power system modeling; Takagi-Sugeno model; Expectation-Maximisation; Takagi-Sugeno Fuzzy Models; discriminant tree; nonlinear system identification;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 2007. ACC '07
Conference_Location :
New York, NY
ISSN :
0743-1619
Print_ISBN :
1-4244-0988-8
Electronic_ISBN :
0743-1619
Type :
conf
DOI :
10.1109/ACC.2007.4283048
Filename :
4283048
Link To Document :
بازگشت