DocumentCode :
3185714
Title :
Learning-based configuration estimation of a multi-segment continuum robot
Author :
Reiter, Austin ; Bajo, Andrea ; Iliopoulos, Konstantinos ; Simaan, Nabil ; Allen, Peter K.
Author_Institution :
Dept. of Comput. Sci., Columbia Univ., New York, NY, USA
fYear :
2012
fDate :
24-27 June 2012
Firstpage :
829
Lastpage :
834
Abstract :
In this paper, we present a visual learning algorithm for estimating the configuration of a multisegment continuum robot designed for surgery. Our algorithm interpolates a stereo visual feature descriptor manifold using Radial Basis Functions (RBFs) to estimate configuration pose angles. Results are shown on a 3-segment snake robot, where rotational accuracy in the range of 1° -2° is achieved.
Keywords :
control system synthesis; feature extraction; interpolation; learning (artificial intelligence); manipulator kinematics; medical robotics; pose estimation; radial basis function networks; robot vision; stereo image processing; surgery; visual perception; 3-segment snake robot; RBF; learning-based configuration pose angle estimation; multisegment continuum robot design; radial basis functions; rotational accuracy; stereo-visual feature descriptor manifold interpolation; surgery; visual learning algorithm; Accuracy; Cameras; Histograms; Image segmentation; Robot kinematics; Training;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Biomedical Robotics and Biomechatronics (BioRob), 2012 4th IEEE RAS & EMBS International Conference on
Conference_Location :
Rome
ISSN :
2155-1774
Print_ISBN :
978-1-4577-1199-2
Type :
conf
DOI :
10.1109/BioRob.2012.6290702
Filename :
6290702
Link To Document :
بازگشت