DocumentCode :
3194436
Title :
Automatic tracking of flying vehicles using geodesic snakes and Kalman filtering
Author :
Betser, Amir ; Vela, Patricio ; Tannenbaum, Allen
Author_Institution :
Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA
Volume :
2
fYear :
2004
fDate :
14-17 Dec. 2004
Firstpage :
1649
Abstract :
This paper describes a tracking algorithm relying on active contours for target extraction and an extended Kalman filter for relative pose estimation. This work represents the first step towards treating the general problem for the control of several unmanned autonomous vehicles flying in formation using only local visual information. In particular, we only allow on-board passive sensing. The problem is an excellent paradigm for studying the use of visual information in a feedback loop, the central theme of controlled active vision.
Keywords :
Kalman filters; active vision; aircraft; feature extraction; nonlinear filters; remotely operated vehicles; target tracking; Kalman filtering; active contours; active vision; automatic tracking; extended Kalman filter; feedback loop; flying vehicles; geodesic snakes; local visual information; on-board passive sensing; relative pose estimation; target extraction; unmanned autonomous vehicles; Active contours; Automatic control; Centralized control; Data mining; Feedback loop; Filtering; Kalman filters; Mobile robots; Remotely operated vehicles; Target tracking;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 2004. CDC. 43rd IEEE Conference on
ISSN :
0191-2216
Print_ISBN :
0-7803-8682-5
Type :
conf
DOI :
10.1109/CDC.2004.1430281
Filename :
1430281
Link To Document :
بازگشت