DocumentCode :
319537
Title :
Algebraic coding techniques for data sequences defined over finite integer rings
Author :
Garg, Hari K. ; See, Yew K.
Author_Institution :
Dept. of Electr. Eng., Nat. Univ. of Singapore, Singapore
Volume :
1
fYear :
1997
fDate :
9-12 Sep 1997
Firstpage :
439
Abstract :
This work establishes the design of BCH (Bose-Chaudhary-Hoquenghem) and RS (Reed Solomon) codes for processing data sequences defined over a ring of integers {0,1...,2a-1}. The approach is to make use of the existing coding theory techniques over GF(2). The derivation of the generator polynomials over Z(2a ) is based on expanding the corresponding generator polynomials defined over GF(2). The decoding procedure for the codes is also derived using the decoder over GF(2) recursively
Keywords :
BCH codes; Galois fields; Reed-Solomon codes; algebraic codes; decoding; number theory; polynomials; sequences; BCH codes; Bose-Chaudhary-Hoquenghem codes; GF(2); RS codes; Reed Solomon codes; algebraic coding techniques; coding theory techniques; data sequences; decoding procedure; finite integer rings; generator polynomials; Algorithm design and analysis; Arithmetic; Building materials; Character generation; Communication systems; Decoding; Digital signal processing; Polynomials; Reed-Solomon codes; Signal processing algorithms;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information, Communications and Signal Processing, 1997. ICICS., Proceedings of 1997 International Conference on
Print_ISBN :
0-7803-3676-3
Type :
conf
DOI :
10.1109/ICICS.1997.647135
Filename :
647135
Link To Document :
بازگشت