Title :
Optimal power flow via quadratic power flow
Author :
Tao, Ye ; MelioPoulos, A. P Sakis
Author_Institution :
Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA
Abstract :
This paper proposes an optimal power flow (OPF) algorithm based on quadratic modeling and incremental loading of the network. The proposed OPF algorithm is robust and highly efficient for large-scale power systems. Robustness is achieved by the design of the algorithm to operate on infeasible but optimal points and move towards the feasible and optimal operating point. Efficiency is achieved by (a) the design of the algorithm to include mainly the active constraints and therefore reducing the problem size and (b) quadratic modeling that provides faster solution times of the network update solutions. The algorithm guarantees a solution. In case that an optimal solution does not exist, it provides the best solution, the constraints that cannot be satisfied and the remedial actions necessary to satisfy the operating constraints. Numerical examples indicate that the proposed algorithm converges fast and the convergence speed is not affected by system size.
Keywords :
load flow; power systems; convergence speed; incremental loading network; large-scale power system; optimal power flow algorithm; quadratic modeling network; quadratic power flow; Algorithm design and analysis; Classification algorithms; Equations; Load flow; Mathematical model; Optimization; Mismatch variables; Optimal power flow; Quadratic power flow;
Conference_Titel :
Power Systems Conference and Exposition (PSCE), 2011 IEEE/PES
Conference_Location :
Phoenix, AZ
Print_ISBN :
978-1-61284-789-4
Electronic_ISBN :
978-1-61284-787-0
DOI :
10.1109/PSCE.2011.5772563