DocumentCode :
32011
Title :
Simulation of Fractional Brownian Surfaces via Spectral Synthesis on Manifolds
Author :
Gelbaum, Zachary ; Titus, Mathew
Author_Institution :
Longboard Capital Advisors, LLC, Santa Monica, CA, USA
Volume :
23
Issue :
10
fYear :
2014
fDate :
Oct. 2014
Firstpage :
4383
Lastpage :
4388
Abstract :
Using the spectral decomposition of the Laplace-Beltrami operator, we simulate fractal surfaces as random series of eigenfunctions. This approach allows us to generate random fields over smooth manifolds of arbitrary dimension, generalizing previous work with fractional Brownian motion with multidimensional parameter. We give examples of surfaces with and without boundary and discuss implementation.
Keywords :
Brownian motion; eigenvalues and eigenfunctions; fractals; image processing; spectral analysis; Laplace-Beltrami operator; fractional Brownian motion; fractional Brownian surfaces; random fields; spectral decomposition; spectral synthesis; Approximation methods; Convergence; Eigenvalues and eigenfunctions; Fractals; Laplace equations; Manifolds; Surface treatment; Fractal surfaces; discrete Laplace-Beltrami operators; fractional Brownian motion;
fLanguage :
English
Journal_Title :
Image Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1057-7149
Type :
jour
DOI :
10.1109/TIP.2014.2348793
Filename :
6879494
Link To Document :
بازگشت