DocumentCode :
32016
Title :
Distributed Kalman Filtering With Dynamic Observations Consensus
Author :
Das, Subhro ; Moura, Jose M. F.
Author_Institution :
Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA
Volume :
63
Issue :
17
fYear :
2015
fDate :
Sept.1, 2015
Firstpage :
4458
Lastpage :
4473
Abstract :
This paper studies distributed estimation of unstable dynamic random fields observed by a sparsely connected network of sensors. The field dynamics are globally detectable, but not necessarily locally detectable. We propose a consensus+innovations distributed estimator, termed Distributed Information Kalman Filter. We prove under what conditions this estimator is asymptotically unbiased with bounded mean-squared error, smaller than for other alternative distributed estimators. Monte Carlo simulations confirm our theoretical error asymptotic results.
Keywords :
Kalman filters; Monte Carlo methods; mean square error methods; Monte Carlo simulations; bounded mean-squared error; distributed estimation; distributed estimators; distributed information Kalman filter; dynamic observations consensus; Estimation; Kalman filters; Noise; Power system dynamics; Sensors; Technological innovation; Vehicle dynamics; Distributed algorithms; Kalman filter; distributed estimation; dynamic consensus; sensor networks;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/TSP.2015.2424205
Filename :
7088659
Link To Document :
بازگشت