DocumentCode :
320511
Title :
Fast algorithm for electromagnetic scattering from two-dimensional conductor of arbitrary geometry
Author :
Zaiping, Nie ; Jun, Hu
Author_Institution :
Dept. of Microwave Eng., Univ. of Electron. Sci. & Technol. of China, Chengdu, China
fYear :
1997
fDate :
2-5 Dec 1997
Firstpage :
693
Abstract :
The fast multipole method (FMM) is used to solve the electromagnetic scattering from two-dimensional conducting bodies of arbitrary shape when a iterative method is used to solve the electric field integral equation (EFIE). FMM reduces the complexity of computing the matrix-vector multiplication from O(N2)) to O(N1.5 ). Instead of the conjugate gradient (CG) method, in this paper the biconjugate gradient (BiCG) method is used to accelerate the iteration process
Keywords :
computational complexity; conjugate gradient methods; electromagnetic wave scattering; integral equations; iterative methods; matrix multiplication; 2D conducting bodies; EM scattering; arbitrary conductor geometry; biconjugate gradient method; complexity reduction; electric field integral equation; electromagnetic scattering; fast algorithm; fast multipole method; iterative method; matrix-vector multiplication; two-dimensional conductor; Acceleration; Character generation; Conductors; Costs; Electromagnetic scattering; Geometry; Integral equations; Message-oriented middleware; Microwave theory and techniques; Shape;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Microwave Conference Proceedings, 1997. APMC '97, 1997 Asia-Pacific
Print_ISBN :
962-442-117-X
Type :
conf
DOI :
10.1109/APMC.1997.654636
Filename :
654636
Link To Document :
بازگشت