Title :
Pulsed and DC charged PCSS based trigger generators
Author :
Glover, S.F. ; Zutavern, F.J. ; Swalby, M.E. ; Cich, M.J. ; Loubriel, G. ; Mar, A. ; White, F.E.
Author_Institution :
Sandia Nat. Labs., Albuquerque, NM, USA
fDate :
June 28 2009-July 2 2009
Abstract :
Prior to this research, we have developed high-gain, GaAs, photoconductive semiconductor switches (PCSSs) to trigger 50-300 kV high voltage switches (HVSs). We have demonstrated that PCSSs can trigger a variety of pulsed power switches operating at 50-300kV by locating the trigger generator directly at the HVS. This was demonstrated for two types of DC-charged trigatrons and two types of field distortion mid-plane switches, including a ?100 kVDC switch produced by the High Current Electronics Institute (HCEI) used in the linear transformer driver. The lowest rms jitter obtained from triggering a HVS with a PCSS was 100 ps from a 300 kV pulse-charged trigatron. PCSSs are the key component in these independently timed, fiber-optically controlled, low jitter trigger generators (TGs) for HVSs. TGs are critical sub-systems for reliable, efficient pulsed power facilities because they control the timing synchronization and amplitude variation of multiple pulse forming lines that combine to produce the total system output. Future facility scale pulsed power systems are even more dependent on triggering, as they consist of many more triggered HVSs and produce shaped-pulses by independent timing of the HVSs. As pulsed power systems become more complex, the complexity of the associated trigger systems also increases. One means to reduce this complexity is to allow the trigger system to be charged directly from the voltage appearing across the HVS. However, for slow or DC charged pulsed power systems this can be particularly challenging as the DC hold off of the PCSS dramatically declines. This paper presents results seeking to address HVS performance requirements over large operating ranges by triggering using a pulsed charged PCSS based TG. Switch operating conditions as low as 45% of self break were achieved. A DC charged PCSS based TG is also introduced and demonstrated over a 39 kV - 61 kV operating range. DC charged PCSS allow the TG to be directly charged from slow or DC- charged pulsed power systems. GaAs PCSSs and neutron irradiated GaAs (n-GaAs) PCSSs were used to investigate the DC charged operation.
Keywords :
gas-discharge tubes; high-voltage techniques; photoconducting switches; pulsed power switches; DC charged PCSS; DC-charged trigatrons; amplitude variation; field distortion mid-plane switches; high voltage switches; linear transformer driver; photoconductive semiconductor switches; pulse forming lines; pulse- charged trigatron; pulsed charged PCSS; pulsed power switches; timing synchronization; trigger generators; voltage 50 kV to 300 kV; DC generators; Gallium arsenide; Jitter; Power semiconductor switches; Power system reliability; Pulse generation; Pulse power systems; Pulse transformers; Timing; Voltage;
Conference_Titel :
Pulsed Power Conference, 2009. PPC '09. IEEE
Conference_Location :
Washington, DC
Print_ISBN :
978-1-4244-4064-1
Electronic_ISBN :
978-1-4244-4065-8
DOI :
10.1109/PPC.2009.5386397