Title :
Parameter estimation of single-input multiple-output systems using the finite impulse response approximation and gradient search
Author :
Yongsong Xiao ; Yanjun Liu
Author_Institution :
Key Lab. of Adv. Process Control for Light Ind. (Minist. of Educ.), Jiangnan Univ., Wuxi, China
Abstract :
This paper considers the parameter estimation problem of a single-input multiple-output (SIMO) system by using some finite impulse response (FIR) models to approximate the fictitious subsystem´s transfer functions. We derive the least squares parameter estimates of the equivalent FIR models with the FIR model orders increasing from available input/output data. Moreover, we use the multi-innovation identification theory to derive a multi-innovation stochastic gradient algorithm for estimating the parameters of the original systems from the estimated FIR model parameters. The proposed algorithm can be extended to other multiple-input multiple-output systems with colored noises.
Keywords :
FIR filters; MIMO systems; approximation theory; gradient methods; least squares approximations; parameter estimation; search problems; stochastic processes; transfer functions; FIR model orders; SIMO system; colored noises; finite impulse response approximation; finite impulse response models; gradient search; least squares parameter estimation; multiinnovation identification theory; multiinnovation stochastic gradient algorithm; multiple-input multiple-output systems; parameter estimation problem; single-input multiple-output system; transfer functions; Computational modeling; Finite impulse response filters; Least squares approximations; Mathematical model; Parameter estimation; Signal processing algorithms; FIR models; Multi-innovation Identification Theory; Parameter Estimation; System Identification;
Conference_Titel :
Control and Decision Conference (CCDC), 2015 27th Chinese
Conference_Location :
Qingdao
Print_ISBN :
978-1-4799-7016-2
DOI :
10.1109/CCDC.2015.7161947