DocumentCode :
3210596
Title :
The Sensitivity Analysis, Optimization and Uncertainty Assessment of the Land Surface Model Parameters
Author :
Su, Gaoli ; Liu, Qinhuo ; Deng, Fangping ; Xin, Xiaozhou
Author_Institution :
State Key Lab. of Remote Sensing Sci., Chinese Acad. of Sci., Beijing, China
Volume :
3
fYear :
2010
fDate :
11-12 May 2010
Firstpage :
950
Lastpage :
954
Abstract :
In order to improve land surface modeling predictions, the land surface models are generally calibrated against measurements. The study addressed the parameter sensitivity analysis, model calibration, the realistic quantification of parameter uncertainty and its effect on the results of Noah land surface model. The LH-OAT method was applied in the sensitivity analysis for the Noah LSM model parameters. Based on the eight important parameters effect on the land surface upward longwave radiation, the shuffled complex evolution metropolis (SCEM-UA) global optimization algorithms is used to automatically infer the posterior distribution of the model parameters. To overcome the computational burden, the optimization has been implemented using parallel computing. The Noah model prediction using the optimal parameters shows that the simulated upward longwave radiation matched measurements fairly well with an R2 value of 0.9842 and Root Mean Squared Error (RMSE) of 5.42W/m2. Results demonstrate that the SCEM-UA algorithm can efficiently evolve the posterior distribution of the parameters for the complex land surface model.
Keywords :
atmospheric radiation; calibration; geophysical techniques; geophysics computing; optimisation; AD 2008 06 11 to 24; LH-OAT method; Noah land surface model; land surface model parameters; land surface upward longwave radiation; model calibration; northwest China; parallel computing; posterior distribution; root mean squared error; sensitivity analysis; shuffled complex evolution metropolis global optimization algorithms; uncertainty assessment; Atmospheric modeling; Calibration; Land surface; Predictive models; Remote sensing; Sensitivity analysis; Soil; Uncertain systems; Uncertainty; Weather forecasting; Noah model; parameter optimization; sensitivity analysis; uncertainty analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Computation Technology and Automation (ICICTA), 2010 International Conference on
Conference_Location :
Changsha
Print_ISBN :
978-1-4244-7279-6
Electronic_ISBN :
978-1-4244-7280-2
Type :
conf
DOI :
10.1109/ICICTA.2010.299
Filename :
5523609
Link To Document :
بازگشت