• DocumentCode
    3211216
  • Title

    Mean-square state filtering and parameter identification for uncertain linear stochastic systems

  • Author

    Basin, Michael ; Loukianov, Alexander ; Hernandez-Gonzalez, Miguel

  • Author_Institution
    Center for Res. & Grad. Studies, CINVESTAV, Jalisco, Mexico
  • fYear
    2009
  • fDate
    10-13 Jan. 2009
  • Firstpage
    1
  • Lastpage
    6
  • Abstract
    This paper presents the mean-square joint state filtering and parameter identification problem for uncertain linear stochastic systems with unknown parameters in both state and observation equations, where the unknown parameters are considered Wiener processes. The original problem is reduced to the filtering problem for an extended state vector that incorporates parameters as additional states. The resulting filtering system is polynomial in state and linear in observations. The obtained mean-square filter for the extended state vector also serves as the mean-square identifier for the unknown parameters. Performance of the designed mean-square state filter and parameter identifier is verified for both, positive and negative, parameter values.
  • Keywords
    Wiener filters; linear systems; parameter estimation; polynomials; stochastic systems; uncertain systems; Wiener process; extended state vector; mean-square joint state filtering; mean-square state filter; parameter identification problem; polynomial; uncertain linear stochastic systems; Equations; Filtering; Linear systems; Maximum likelihood estimation; Nonlinear filters; Parameter estimation; Polynomials; State estimation; Stochastic systems; Vectors; Filtering; parameter identification; uncertain linear system;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Electrical Engineering, Computing Science and Automatic Control,CCE,2009 6th International Conference on
  • Conference_Location
    Toluca
  • Print_ISBN
    978-1-4244-4688-9
  • Electronic_ISBN
    978-1-4244-4689-6
  • Type

    conf

  • DOI
    10.1109/ICEEE.2009.5393367
  • Filename
    5393367