DocumentCode :
3211216
Title :
Mean-square state filtering and parameter identification for uncertain linear stochastic systems
Author :
Basin, Michael ; Loukianov, Alexander ; Hernandez-Gonzalez, Miguel
Author_Institution :
Center for Res. & Grad. Studies, CINVESTAV, Jalisco, Mexico
fYear :
2009
fDate :
10-13 Jan. 2009
Firstpage :
1
Lastpage :
6
Abstract :
This paper presents the mean-square joint state filtering and parameter identification problem for uncertain linear stochastic systems with unknown parameters in both state and observation equations, where the unknown parameters are considered Wiener processes. The original problem is reduced to the filtering problem for an extended state vector that incorporates parameters as additional states. The resulting filtering system is polynomial in state and linear in observations. The obtained mean-square filter for the extended state vector also serves as the mean-square identifier for the unknown parameters. Performance of the designed mean-square state filter and parameter identifier is verified for both, positive and negative, parameter values.
Keywords :
Wiener filters; linear systems; parameter estimation; polynomials; stochastic systems; uncertain systems; Wiener process; extended state vector; mean-square joint state filtering; mean-square state filter; parameter identification problem; polynomial; uncertain linear stochastic systems; Equations; Filtering; Linear systems; Maximum likelihood estimation; Nonlinear filters; Parameter estimation; Polynomials; State estimation; Stochastic systems; Vectors; Filtering; parameter identification; uncertain linear system;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Electrical Engineering, Computing Science and Automatic Control,CCE,2009 6th International Conference on
Conference_Location :
Toluca
Print_ISBN :
978-1-4244-4688-9
Electronic_ISBN :
978-1-4244-4689-6
Type :
conf
DOI :
10.1109/ICEEE.2009.5393367
Filename :
5393367
Link To Document :
بازگشت