DocumentCode :
321322
Title :
Robust neural stabilizers for unknown systems
Author :
Kosmatopoulos, E.B. ; Chasslakos, A. ; Boussalis, H. ; Ioannou, P.I.
Author_Institution :
Univ. of Southern California, Los Angeles, CA, USA
Volume :
2
fYear :
1997
fDate :
10-12 Dec 1997
Firstpage :
1579
Abstract :
We try to solve the stabilization problem in the case where the system is unknown and the only information about the system is that: the system is robustly stabilizable; the state dimension of the system is known; and the system vector-fields are at least C1
Keywords :
function approximation; neurocontrollers; nonlinear control systems; robust control; uncertain systems; vectors; robust neural stabilizers; stabilization problem; state dimension; unknown systems; vector-fields; Adaptive control; Control systems; Equations; Feedback loop; Lyapunov method; Neural networks; Nonlinear systems; Programmable control; Robust stability; Robustness;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1997., Proceedings of the 36th IEEE Conference on
Conference_Location :
San Diego, CA
ISSN :
0191-2216
Print_ISBN :
0-7803-4187-2
Type :
conf
DOI :
10.1109/CDC.1997.657718
Filename :
657718
Link To Document :
بازگشت