Title :
Anytime Fuzzy Fast Fourier Transformation
Author :
Várkonyi-Kóczy, Annamária R. ; Várkonyi, Dániel T.
Author_Institution :
Dept. of Meas. & Inf. Syst., Budapest Univ. of Technol. & Econ., Budapest
Abstract :
Anytime signal processing algorithms are to improve the overall performance of larger scale embedded digital signal processing (DSP) systems. In such systems there are cases where due to abrupt changes within the environment and/or the processing system temporal shortage of computational power and/or loss of some data may occur. It is an obvious requirement that even in such situations the actual processing should be continued to insure appropriate performance. This means that signal processing of somewhat simpler complexity should provide outputs of acceptable quality to continue the operation of the complete embedded system. The accuracy of the processing will be temporarily lower but possibly still enough to produce data for qualitative evaluations and supporting decisions. In this paper a new fast anytime fuzzy Fourier transformation algorithm is introduced. The presented method reduces the delay problem caused by the block-oriented fast algorithms and at the same time keeps the computational complexity on relatively low level. It makes possible the availability of good quality partial results or estimates before the samples of the period arrive, which can be advantageous in case of abrupt reaction need, long or possibly infinite input data sequences.
Keywords :
computational complexity; embedded systems; fast Fourier transforms; fuzzy set theory; signal processing; anytime fuzzy fast Fourier transformation; block-oriented fast algorithms; computational complexity; delay problem; larger scale embedded digital signal processing systems; signal processing algorithms; Computational complexity; Computerized monitoring; Delay effects; Digital signal processing; Discrete Fourier transforms; Embedded system; Fuzzy systems; Information processing; Signal processing; Signal processing algorithms; DFT; FFT; anytime systems; fuzzy signal processing; transformed domain signal processing;
Conference_Titel :
Intelligent Engineering Systems, 2008. INES 2008. International Conference on
Conference_Location :
Miami, FL
Print_ISBN :
978-1-4244-2082-7
Electronic_ISBN :
978-1-4244-2083-4
DOI :
10.1109/INES.2008.4481305