DocumentCode :
3214314
Title :
Synchronous machine parameter identification using particle swarm optimization
Author :
Hutchison, G.I. ; Zahawi, Bashar ; Harmer, K. ; Stedall, B. ; Giaouris, D.
Author_Institution :
Newcastle University, UK
fYear :
2010
fDate :
19-21 April 2010
Firstpage :
1
Lastpage :
4
Abstract :
Synchronous machines are the most widely used machines in power generation. Identifying their parameters in a non invasive way is very challenging due to the inherent nonlinearity of machine performance. This paper proposes a synchronous machine parameter identification method using particle swarm optimization (PSO) with a constriction factor. The PSO allows a synchronous machine model output to be used as the objective function to give a new, more efficient method of parameter identification. This paper highlights the effectiveness of the proposed method for the identification of synchronous machine model parameters, using both simulation and manufacturers measured experimental data. The paper will also consider the effectiveness of the method as the number of parameters to be identified is increased.
Keywords :
PSO; Parameter Identification; Particle Swarm Optimization; Synchronous Machines;
fLanguage :
English
Publisher :
iet
Conference_Titel :
Power Electronics, Machines and Drives (PEMD 2010), 5th IET International Conference on
Conference_Location :
Brighton, UK
Type :
conf
DOI :
10.1049/cp.2010.0061
Filename :
5523827
Link To Document :
بازگشت