DocumentCode :
321446
Title :
Supremum operators and computation of supremal elements in system theory
Author :
Zad, S. Hashtrudi ; Kwong, R.H. ; Wonham, W.M.
Author_Institution :
Dept. of Electr. & Comput. Eng., Toronto Univ., Ont., Canada
Volume :
3
fYear :
1997
fDate :
10-12 Dec 1997
Firstpage :
2946
Abstract :
Constrained supremum and supremum operators are introduced to obtain a general procedure for computing supremal elements of upper semilattices. Examples of such elements include supremal (A,B)-invariant subspaces in linear system theory and supremal controllable sublanguages in discrete-event system theory. For some examples, we show that the algorithms available in the literature are special cases of our procedure
Keywords :
control system analysis; control system synthesis; discrete event systems; formal languages; linear systems; constrained supremum; discrete-event system theory; linear system theory; supremal (A,B)-invariant subspaces; supremal controllable sublanguages; supremal elements; supremum operators; upper semilattices; Algebra; Control systems; Lattices; Linear systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1997., Proceedings of the 36th IEEE Conference on
Conference_Location :
San Diego, CA
ISSN :
0191-2216
Print_ISBN :
0-7803-4187-2
Type :
conf
DOI :
10.1109/CDC.1997.657899
Filename :
657899
Link To Document :
بازگشت