DocumentCode :
321483
Title :
Minimum classification error factor analysis (MCE-FA) for automatic speech recognition
Author :
Rahim, Mazin ; Saul, Lawrence
Author_Institution :
AT&T Labs.-Res., Florham Park, NJ, USA
fYear :
1997
fDate :
14-17 Dec 1997
Firstpage :
172
Lastpage :
178
Abstract :
Modeling acoustic correlation in automatic speech recognition systems is essential when the speech signal is non stationary or corrupted by noise. We present a statistical method for improved acoustic modeling in continuous density hidden Markov models (HMMs). Factor analysis uses a small number of parameters to model the covariance structure of the speech signal. These parameters are estimated by an Expectation-Maximization algorithm, then further adjusted using discriminative minimum classification error training. Experimental results on 1219 New Jersey town names demonstrate that the proposed method produces faster, smaller and more accurate recognition models
Keywords :
acoustic analysis; acoustic signal processing; error analysis; hidden Markov models; pattern classification; speech recognition; Expectation-Maximization algorithm; MCE-FA; New Jersey town names; accurate recognition models; acoustic correlation modeling; automatic speech recognition; continuous density hidden Markov models; covariance structure; discriminative minimum classification error training; minimum classification error factor analysis; parameter estimation; speech signal; statistical method; Acoustic noise; Automatic speech recognition; Error analysis; Expectation-maximization algorithms; Hidden Markov models; Parameter estimation; Signal analysis; Speech analysis; Speech enhancement; Statistical analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Automatic Speech Recognition and Understanding, 1997. Proceedings., 1997 IEEE Workshop on
Conference_Location :
Santa Barbara, CA
Print_ISBN :
0-7803-3698-4
Type :
conf
DOI :
10.1109/ASRU.1997.659002
Filename :
659002
Link To Document :
بازگشت