DocumentCode :
3217312
Title :
Solving the moving obstacle path planning problem using embedded variational methods
Author :
Tominaga, Henry ; Bavarian, Behnam
fYear :
1991
fDate :
9-11 Apr 1991
Firstpage :
450
Abstract :
An analytically derived algorithm to solve a simple two-dimensional robot planning problem subject to moving obstacle constraints is presented. Normally a variational formulation is intractable since an obstacle-cluttered environment will present multiple trajectories that are locally optimal solutions. To derive an algorithm which produces a unique solution, an embedding method commonly found in homotopic methods is used. A fictitious third dimension is added to the two-dimensional formulation; local (but nonglobal solutions) in the original problem become saddle-point trajectories in the embedded formulation, allowing for convergence of a numerical algorithm to continue along a descent direction. The computational algorithm becomes globally convergent, i.e., convergence to the global solution is achieved regardless of the choice of initial trajectory used to start the algorithm. Simulation results demonstrate the effectiveness of the algorithm
Keywords :
convergence of numerical methods; navigation; optimisation; planning (artificial intelligence); robots; variational techniques; 2D robot planning; convergence; embedded variational methods; homotopic methods; moving obstacle path planning; saddle-point trajectories; Algorithm design and analysis; Calculus; Cost function; History; Iterative algorithms; Manipulator dynamics; Optimal control; Optimization methods; Path planning; Robots;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Robotics and Automation, 1991. Proceedings., 1991 IEEE International Conference on
Conference_Location :
Sacramento, CA
Print_ISBN :
0-8186-2163-X
Type :
conf
DOI :
10.1109/ROBOT.1991.131619
Filename :
131619
Link To Document :
بازگشت