DocumentCode :
3217807
Title :
Bounded-depth Frege lower bounds for weaker pigeonhole principles
Author :
Buresh-Oppenheim, Josh ; Beame, Paul ; Pitassi, Toniann ; Raz, Ran ; Sabharwal, Ashish
Author_Institution :
Dept. of Comput. Sci., Toronto Univ., Ont., Canada
fYear :
2002
fDate :
2002
Firstpage :
583
Lastpage :
592
Abstract :
We prove a quasi-polynomial lower bound on the size of bounded-depth Frege proofs of the pigeonhole principle PHPnm where m = (1 + 1/polylog n)n. This lower bound qualitatively matches the known quasipolynomial-size bounded-depth Frege proofs for these principles. Our technique, which uses a switching lemma argument like other lower bounds for bounded-depth Frege proofs, is novel in that the tautology to which this switching lemma is applied remains random throughout the argument.
Keywords :
combinatorial mathematics; computational complexity; theorem proving; bounded-depth Frege lower bounds; bounded-depth Frege proofs; propositional pigeonhole principle; quasi-polynomial lower bound; quasipolynomial-size bounded-depth Frege proofs; switching lemma argument; weaker pigeonhole principles; Combinatorial mathematics; Computer science; Polynomials; Radio access networks;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Foundations of Computer Science, 2002. Proceedings. The 43rd Annual IEEE Symposium on
ISSN :
0272-5428
Print_ISBN :
0-7695-1822-2
Type :
conf
DOI :
10.1109/SFCS.2002.1181982
Filename :
1181982
Link To Document :
بازگشت