DocumentCode :
3218784
Title :
Calculation of Beam-Loaded Q in High-Power Klystrons
Author :
DeFord, J. ; Held, B. ; Ko, K. ; Ivanov, V.
Author_Institution :
Simulation Technology & Applied Research, Inc., Mequon, WI 53092, U.S.A.
fYear :
2005
fDate :
16-20 May 2005
Firstpage :
4060
Lastpage :
4062
Abstract :
Instabilities in the gun region of a high-power klystron can occur when there is positive feedback between a mode and an induced current on the quasi-steady state beam emitted by the gun cathode[1]. This instability is dependent on the gun voltage, and is predicted on the basis of a negative total Q. The established method for computing the beam-loaded Q of a cavity involves using a time-dependent electromagnetic particle-in-cell (PIC) code to track beam particles through the quasi-static gun fields perturbed by the electromagnetic fields of a cavity eigenmode[2]. The energy imparted to the beam by the mode is obtained by integrating the Lorentz force along the particle tracks, and this quantity is simply related to the beam-loaded Q. We have developed an alternative approach that yields comparable accuracy but is computationally much simpler. The new method is based on a time-independent electrostatic PIC calculation, resulting in much faster solutions without loss of accuracy. We will present the theory and implementation of the new method, as well as benchmarks and results from analysis of the XP-4 klystron that show a potential instability near 3 GHz.
Keywords :
Circuits; Electromagnetic fields; Electrostatics; Klystrons; Particle beams; Particle tracking; Radio frequency; Space charge; State feedback; Voltage;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Particle Accelerator Conference, 2005. PAC 2005. Proceedings of the
Print_ISBN :
0-7803-8859-3
Type :
conf
DOI :
10.1109/PAC.2005.1591717
Filename :
1591717
Link To Document :
بازگشت