DocumentCode :
3227444
Title :
Estimation covariance of measurement fusion on track-to-track problem
Author :
Xue-bo, Jin ; You-xian, Sun
Author_Institution :
Nat. Lab. of Ind. Control Technol., Zhejiang Univ., Hangzhou, China
Volume :
3
fYear :
2002
fDate :
28-31 Oct. 2002
Firstpage :
1650
Abstract :
Measurement fusion is an optimal data fusion algorithm. The covariance of measurement fusion is proved to be decided by a function of the measurement matrix and measurement noise covariance. The greater the function is, the less the covariance measurement fusion method can obtain. Therefore, the estimation accuracy increases when the function increase. The results of simulation agree with the theoretical results.
Keywords :
covariance matrices; measurement errors; optimisation; sensor fusion; estimation accuracy; estimation covariance; measurement fusion; measurement matrix; measurement noise covariance; optimal data fusion algorithm; simulation results; track-to-track problem; Covariance matrix; Erbium; Estimation error; Filters; Maximum likelihood estimation; Noise measurement; Sensor fusion; State estimation; Sun; Target tracking;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
TENCON '02. Proceedings. 2002 IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering
Print_ISBN :
0-7803-7490-8
Type :
conf
DOI :
10.1109/TENCON.2002.1182649
Filename :
1182649
Link To Document :
بازگشت