• DocumentCode
    3231317
  • Title

    Scalable unified dual-radix architecture for Montgomery multiplication in GF(P) and GF(2n)

  • Author

    Tanimura, Kazuyuki ; Nara, Ryuta ; Kohara, Shunitsu ; Shimizu, Kazunori ; Shi, Youhua ; Togawa, Nozomu ; Yanagisawa, Masao ; Ohtsuki, Tatsuo

  • Author_Institution
    Waseda Univ., Tokyo
  • fYear
    2008
  • fDate
    21-24 March 2008
  • Firstpage
    697
  • Lastpage
    702
  • Abstract
    Modular multiplication is the most dominant arithmetic operation in elliptic curve cryptography (ECC), which is a type of public-key cryptography. Montgomery multiplication is commonly used as a technique for the modular multiplication and required scalability since the bit length of operands varies depending on the security levels. Also, ECC is performed in GF(P) or GF(2n), and unified architectures for GF(P) and GF(2n) multiplier are needed. However, in previous works, changing frequency or dual-radix architecture is necessary to deal with delay-time difference between GF(P) and GF(2n) circuits of the multiplier because the critical path of GF(P) circuit is longer. This paper proposes a scalable unified dual-radix architecture for Montgomery multiplication in GF(P) and GF(2n). The proposed architecture unifies 4 parallel radix-216 multipliers in GF(P) and a radix-264 multiplier in GF(2n) into a single unit. Applying lower radix to GF(P) multiplier shortens its critical path and makes it possible to compute the operands in the two fields using the same multiplier at the same frequency so that clock dividers to deal with the delay-time difference are not required. Moreover, parallel architecture in GF(P) reduces the clock cycles increased by dual-radix approach. Consequently, the proposed architecture achieves to compute GF(P) 256-bit Montgomery multiplication in 0.23 mus.
  • Keywords
    multiplying circuits; public key cryptography; Montgomery multiplication; elliptic curve cryptography; modular multiplication; public-key cryptography; unified dual-radix architecture; Arithmetic; Circuits; Clocks; Computer architecture; Delay; Elliptic curve cryptography; Frequency; Public key cryptography; Scalability; Security;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Design Automation Conference, 2008. ASPDAC 2008. Asia and South Pacific
  • Conference_Location
    Seoul
  • Print_ISBN
    978-1-4244-1921-0
  • Electronic_ISBN
    978-1-4244-1922-7
  • Type

    conf

  • DOI
    10.1109/ASPDAC.2008.4484041
  • Filename
    4484041