• DocumentCode
    3232986
  • Title

    Deploying Mobile Nodes to Connect Wireless Sensor Networks Using Novel Algorithms

  • Author

    Chang WuYu ; Chen, Eason ; Chun Cheng Fang

  • Author_Institution
    ChungHua Univ., Hsinchu
  • fYear
    2007
  • fDate
    1-3 Aug. 2007
  • Firstpage
    199
  • Lastpage
    204
  • Abstract
    Wireless sensor networks receive lots of attention due to its promising techniques and wide-ranging applications in recent years. The kind of network occasionally becomes disconnected due to initial uneven deployments or unpredictable failures or run out of battery of sensor nodes. However, sensor nodes with mobility then can be used in an addition deployment to reconnect the disconnected sensor networks. Theoretically, the augmenting geometric graph problem is defined here to model this kind of connectivity issues. The work proposes two novel algorithms: the graph-oriented algorithm and the divide-and-conquer algorithm to connect disconnected networks by using as less as possible mobile nodes. The first algorithm highly exploits traditional graph and geometry techniques including Fermat point, convex hull, nearest neighbor, minimum cost spanning tree, and graph contraction. Adopting a quite different approach, the second algorithm resolves the problem by dividing the deployed area and merging sub-solutions recursively. With respect to complexity issue, the graph-oriented algorithm takes 0(n3) time; on the other hand, the divide-and-conquer algorithm requires 0(n log n) time, where n is the size of vertex set of the given graph G=(V, E). These proposed two algorithms have low time complexity and can be implemented in a centralized sensor network.
  • Keywords
    divide and conquer methods; failure analysis; geometry; mobile radio; set theory; telecommunication network reliability; trees (mathematics); wireless sensor networks; Fermat point; augmenting geometric graph problem; convex hull; deploying mobile nodes; divide-and-conquer algorithm; graph contraction; graph-oriented algorithm; minimum cost spanning tree; nearest neighbor; unpredictable failures; vertex set; wide-ranging applications; wireless sensor networks; Application software; Batteries; Costs; Geometry; Medical services; Merging; Nearest neighbor searches; Patient monitoring; Tree graphs; Wireless sensor networks;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Wireless Algorithms, Systems and Applications, 2007. WASA 2007. International Conference on
  • Conference_Location
    Chicago, IL
  • Print_ISBN
    978-0-7695-2981-3
  • Type

    conf

  • DOI
    10.1109/WASA.2007.31
  • Filename
    4288231