• DocumentCode
    323311
  • Title

    N-dimensional views in fuzzy data analysis

  • Author

    Umayahara, K. ; Nakamori, Yoshiteru

  • Author_Institution
    Adv. Res. Alliance, Tsukuba Univ., Ibaraki, Japan
  • Volume
    1
  • fYear
    1997
  • fDate
    28-31 Oct 1997
  • Firstpage
    54
  • Abstract
    This paper considers the problem of detecting local substructures of a system in a high dimensional data space by applying the fuzzy clustering technique. First, a new objective function to improve existing approaches is proposed, and then an efficient algorithm for detecting clusters with different dimensionalities is presented. Finally, a new type of fuzzy modeling using elliptic membership functions is discussed
  • Keywords
    data analysis; fuzzy set theory; pattern recognition; cluster detection; elliptic membership functions; fuzzy clustering; fuzzy data analysis; fuzzy modeling; high dimensional data space; local substructure detection; objective function; Clustering algorithms; Data analysis; Ear; Eigenvalues and eigenfunctions; Linearity; Scattering; Shape; Stress;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Intelligent Processing Systems, 1997. ICIPS '97. 1997 IEEE International Conference on
  • Conference_Location
    Beijing
  • Print_ISBN
    0-7803-4253-4
  • Type

    conf

  • DOI
    10.1109/ICIPS.1997.672738
  • Filename
    672738