Title :
A novel smooth Support Vector Machines for classification and regression
Author :
Dong, Jianmin ; Wang, Ruopeng
Author_Institution :
Sch. of Inf. Eng., Tibet Inst. For Nat., Xianyang, China
Abstract :
Novel smoothing function method for support vector classification (SVC) and support vector regression (SVR) are proposed and attempt to overcome some drawbacks of former method which are complex, subtle, and sometimes difficult to implement. First, used Karush-Kuhn-Tucker complementary condition in optimization theory, unconstrained nondifferentiable optimization model is built. Then the smooth approximation algorithm basing on differentiable function is given. Finally, the paper trains the data sets with standard unconstraint optimization method. This algorithm is fast and insensitive to initial point. Theory analysis and numerical results illustrate that smoothing function method for SVMs are feasible and effective.
Keywords :
optimisation; pattern classification; regression analysis; support vector machines; Karush-Kuhn-Tucker complementary condition; smooth approximation algorithm; smooth support vector machines; support vector classification; unconstrained nondifferentiable optimization model; unconstraint optimization method; Approximation algorithms; Computer science; Computer science education; Educational technology; Mathematics; Physics education; Smoothing methods; Static VAr compensators; Support vector machine classification; Support vector machines; Support Vector Machine(SVM); algorithm; classification; optimization; regression; smmoting function;
Conference_Titel :
Computer Science & Education, 2009. ICCSE '09. 4th International Conference on
Conference_Location :
Nanning
Print_ISBN :
978-1-4244-3520-3
Electronic_ISBN :
978-1-4244-3521-0
DOI :
10.1109/ICCSE.2009.5228536