Title :
Feature selection improves the accuracy of classifying Alzheimer disease using diffusion tensor images
Author :
Demirhan, Ayse ; Nir, Talia M. ; Zavaliangos-Petropulu, Artemis ; Jack, Clifford R. ; Weiner, Michael W. ; Bernstein, Matt A. ; Thompson, Paul M. ; Jahanshad, Neda
Author_Institution :
Fac. of Technol., Gazi Univ., Ankara, Turkey
Abstract :
Diffusion tensor imaging (DTI) has recently been added to several large-scale studies of Alzheimer´s disease (AD), such as the Alzheimer´s Disease Neuroimaging Initiative (ADNI), to investigate white matter (WM) abnormalities not detectable on standard anatomical MRI. Disease effects can be widespread, and the profile of WM abnormalities across tracts is still not fully understood. Here we analyzed image-wide measures from DTI fractional anisotropy (FA) maps to classify AD patients (n=43), mild cognitive impairment (n=114) and cognitively healthy elderly controls (n=70). We used voxelwise maps of FA along with averages in WM regions of interest (ROI) to drive a Support Vector Machine. We further used the ReliefF algorithm to select the most discriminative WM voxels for classification. This improved accuracy for all classification tasks by up to 15%. We found several clusters formed by the ReliefF algorithm, highlighting specific pathways affected in AD but not always captured when analyzing ROIs.
Keywords :
biomedical MRI; diseases; feature selection; image classification; medical image processing; support vector machines; Alzheimer disease classification; Alzheimer disease neuroimaging initiative; DTI fractional anisotropy map; WM voxels; anatomical MRI; diffusion tensor images; diffusion tensor imaging; feature selection; image-wide measurement; relieff algorithm; support vector machine; voxelwise map; white matter abnormality; Accuracy; Alzheimer´s disease; Classification algorithms; Diffusion tensor imaging; Kernel; Support vector machines; Alzheimer´s disease; diffusion tensor imaging; fractional anisotropy; support vector machines; voxel-based analysis;
Conference_Titel :
Biomedical Imaging (ISBI), 2015 IEEE 12th International Symposium on
Conference_Location :
New York, NY
DOI :
10.1109/ISBI.2015.7163832