• DocumentCode
    3239275
  • Title

    Icasso: software for investigating the reliability of ICA estimates by clustering and visualization

  • Author

    Himberg, Johan ; Hyvärinen, Aapo

  • Author_Institution
    Neural Network Res. Centre, Helsinki Univ. of Technol., Finland
  • fYear
    2003
  • fDate
    17-19 Sept. 2003
  • Firstpage
    259
  • Lastpage
    268
  • Abstract
    A major problem in application of independent component analysis (ICA) is that the reliability of the estimated independent components is not known. Firstly, the finite sample size induces statistical errors in the estimation. Secondly, as real data never exactly follows the ICA model, the contrast function used in the estimation may have many local minima which are all equally good, or the practical algorithm may not always perform properly, for example getting stuck in local minima with strongly suboptimal values of the contrast function. We present an explorative visualization method for investigating the relations between estimates from FastICA. The algorithmic and statistical reliability is investigated by running the algorithm many times with different initial values or with differently bootstrapped data sets, respectively. Resulting estimates are compared by visualizing their clustering according to a suitable similarity measure. Reliable estimates correspond to tight clusters, and unreliable ones to points which do not belong to any such cluster. We have developed a software package called Icasso to implement these operations. We also present results of this method when applying Icasso on biomedical data.
  • Keywords
    data analysis; data visualisation; error statistics; independent component analysis; mathematics computing; reliability; software packages; Icasso software package; data analysis; finite sample size; independent component analysis; statistical errors; statistical reliability; Application software; Bioinformatics; Clustering algorithms; Computer science; Data analysis; Data visualization; Erbium; Independent component analysis; Information technology; Neural networks;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Neural Networks for Signal Processing, 2003. NNSP'03. 2003 IEEE 13th Workshop on
  • ISSN
    1089-3555
  • Print_ISBN
    0-7803-8177-7
  • Type

    conf

  • DOI
    10.1109/NNSP.2003.1318025
  • Filename
    1318025