• DocumentCode
    3239356
  • Title

    Parameter distribution estimation in first order ODE

  • Author

    Tianyi Yang ; Nguyen, Ngac Ky ; Yu-Fang Jin ; Lindsey, Merry L.

  • Author_Institution
    Dept. of Electr. & Comput. Eng., Univ. of Texas at San Antonio, San Antonio, TX, USA
  • fYear
    2013
  • fDate
    17-19 Nov. 2013
  • Firstpage
    62
  • Lastpage
    65
  • Abstract
    With development of new technologies applied to biological experiments, more and more data are generated every day. To make predictions in biological systems, mathematical modeling plays a critical role. Ordinary differential equations (ODEs) contribute to a large portion in mathematical modeling. In which parameters are inevitable. Noise is intrinsic in all experiments. Therefore, to think of parameters as statistical distributions is a realistic treatment. In this paper, we discuss in a 1st order ODE common in biological systems, how to calculate parameter distribution analytically according to the experimentally observed output assumed to be normal distribution. Conditions on when parameter can be correctly estimated are elucidated.
  • Keywords
    biology; differential equations; parameter estimation; statistical distributions; biological systems; first order ODE; mathematical modeling; ordinary differential equations; parameter distribution estimation; statistical distributions; Bioinformatics; Biological system modeling; Biological systems; Computational modeling; Genomics; Mathematical model;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Genomic Signal Processing and Statistics (GENSIPS), 2013 IEEE International Workshop on
  • Conference_Location
    Houston, TX
  • Print_ISBN
    978-1-4799-3461-4
  • Type

    conf

  • DOI
    10.1109/GENSIPS.2013.6735932
  • Filename
    6735932