DocumentCode :
3242927
Title :
Quantum algorithms for element distinctness
Author :
Buhrman, Harry ; Durr, C. ; Heiligman, Mark ; Høyer, Peter ; Magniez, Frédéric ; Santha, Miklos ; De Wolf, Ronald
Author_Institution :
CWI, Amsterdam, Netherlands
fYear :
2001
fDate :
2001
Firstpage :
131
Lastpage :
137
Abstract :
We present several applications of quantum amplitude amplification to finding claws and collisions in ordered or unordered functions. Our algorithms generalize those of Brassard, Hoyer, and Tapp (1998), and imply an O(N3/4 log N) quantum upper bound for the element distinctness problem in the comparison complexity model. This contrasts with Θ(N log N) classical complexity. We also prove a lower bound of Ω(√N) comparisons for this problem and derive bounds for a number of related problems
Keywords :
computational complexity; quantum computing; complexity model; element distinctness; lower bound; ordered functions; quantum algorithms; quantum amplitude amplification; quantum computing; quantum upper bound; unordered functions; Quantum computing; Quantum mechanics; Upper bound;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Complexity, 16th Annual IEEE Conference on, 2001.
Conference_Location :
Chicago, IL
Print_ISBN :
0-7695-1053-1
Type :
conf
DOI :
10.1109/CCC.2001.933880
Filename :
933880
Link To Document :
بازگشت