DocumentCode :
3243821
Title :
An extended displacement operator for weakly structured covariance matrices
Author :
Desbouvries, F. ; Gueguen, Cedric
Author_Institution :
Inst. Nat. des Telecommun., Evry, France
Volume :
5
fYear :
1992
fDate :
23-26 Mar 1992
Firstpage :
21
Abstract :
The Gohberg-Semencul formula is an explicit expression of the inverse of a Toeplitz matrix in terms of a reduced number of parameters which happen to be the forward and backward autoregressive parameters. It has been nicely understood in terms of displacement ranks. With the help of a new displacement operator, it is shown that this two-term formula remains valid in the general positive definite case, provided that the shifted predictors are now associated with the successive principal submatrices. Besides, this formula induces a general relationship among forward and backward predictors
Keywords :
matrix algebra; signal processing; statistical analysis; Gohberg-Semencul formula; Toeplitz matrix inverse; backward autoregressive parameters; displacement ranks; extended displacement operator; forward autoregressive parameters; signal processing; weakly structured covariance matrices; Covariance matrix; Matrix decomposition; Roentgenium; Signal processing; Signal processing algorithms; Symmetric matrices; Technological innovation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1992. ICASSP-92., 1992 IEEE International Conference on
Conference_Location :
San Francisco, CA
ISSN :
1520-6149
Print_ISBN :
0-7803-0532-9
Type :
conf
DOI :
10.1109/ICASSP.1992.226668
Filename :
226668
Link To Document :
بازگشت