DocumentCode :
324399
Title :
Minimizing the effects of tolerance faults on hardware realizations of cellular neural networks
Author :
Tetzlaff, Ronald ; Kunz, R. ; Geis, G. ; Wolf, D.
Author_Institution :
Inst. fur Angewandte Phys., Frankfurt Univ., Germany
fYear :
1998
fDate :
14-17 Apr 1998
Firstpage :
385
Lastpage :
390
Abstract :
In this paper a procedure for minimizing the effects of tolerance faults in cellular neural network (CNN) chips is presented. The simulation system SCNN was connected with the “CNN prototyping system” for adjusting the parameter values of the cp300 CNN chip. Results showing the erroneous outputs of the VLSI chip are presented, together with a suitable way for adapting parameter directly to a CNN realization
Keywords :
VLSI; analogue processing circuits; cellular neural nets; error analysis; fault tolerant computing; image processing; minimisation; neural chips; VLSI; cellular neural networks; cp300 analogue CNN chip; error minimisation; hardware realizations; image processing; neural net chips; prototyping system; simulation; tolerance faults; Backpropagation algorithms; Cellular neural networks; Circuit faults; Equations; Joining processes; Linux; Minimization methods; Neural network hardware; Very large scale integration; Virtual prototyping;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Cellular Neural Networks and Their Applications Proceedings, 1998 Fifth IEEE International Workshop on
Conference_Location :
London
Print_ISBN :
0-7803-4867-2
Type :
conf
DOI :
10.1109/CNNA.1998.685407
Filename :
685407
Link To Document :
بازگشت