• DocumentCode
    324399
  • Title

    Minimizing the effects of tolerance faults on hardware realizations of cellular neural networks

  • Author

    Tetzlaff, Ronald ; Kunz, R. ; Geis, G. ; Wolf, D.

  • Author_Institution
    Inst. fur Angewandte Phys., Frankfurt Univ., Germany
  • fYear
    1998
  • fDate
    14-17 Apr 1998
  • Firstpage
    385
  • Lastpage
    390
  • Abstract
    In this paper a procedure for minimizing the effects of tolerance faults in cellular neural network (CNN) chips is presented. The simulation system SCNN was connected with the “CNN prototyping system” for adjusting the parameter values of the cp300 CNN chip. Results showing the erroneous outputs of the VLSI chip are presented, together with a suitable way for adapting parameter directly to a CNN realization
  • Keywords
    VLSI; analogue processing circuits; cellular neural nets; error analysis; fault tolerant computing; image processing; minimisation; neural chips; VLSI; cellular neural networks; cp300 analogue CNN chip; error minimisation; hardware realizations; image processing; neural net chips; prototyping system; simulation; tolerance faults; Backpropagation algorithms; Cellular neural networks; Circuit faults; Equations; Joining processes; Linux; Minimization methods; Neural network hardware; Very large scale integration; Virtual prototyping;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Cellular Neural Networks and Their Applications Proceedings, 1998 Fifth IEEE International Workshop on
  • Conference_Location
    London
  • Print_ISBN
    0-7803-4867-2
  • Type

    conf

  • DOI
    10.1109/CNNA.1998.685407
  • Filename
    685407