DocumentCode :
3244652
Title :
Approximation analysis of empirical feature-based learning with truncated sparsity
Author :
Chen, Hong ; Xiang, Hu-zhou ; Tang, Yi ; Yu, Zhao ; Zhang, Xiao-li
Author_Institution :
Coll. of Sci., Huazhong Agric. Univ., Wuhan, China
fYear :
2012
fDate :
15-17 July 2012
Firstpage :
118
Lastpage :
124
Abstract :
A sparse algorithm, based on empirical feature selection, is investigated from the viewpoint of learning theory. It is a novel way to realize sparse empirical feature-based learning different from the regularized kernel projection machines. Représenter theorem and error analysis of this algorithm are established without sparsity assumption of regression function. An empirical study verifies our theoretical analysis.
Keywords :
approximation theory; error analysis; learning (artificial intelligence); statistical analysis; Représenter theorem; approximation analysis; empirical feature selection; error analysis; learning theory; regularized kernel projection machines; sparse algorithm; sparse empirical feature-based learning; truncated sparsity; Algorithm design and analysis; Eigenvalues and eigenfunctions; Hilbert space; Kernel; Learning systems; Pattern recognition; Wavelet analysis; Empirical feature; Empirical risk minimization; Learning theory; Reproducing kernel Hilbert space; Sparse;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Wavelet Analysis and Pattern Recognition (ICWAPR), 2012 International Conference on
Conference_Location :
Xian
ISSN :
2158-5695
Print_ISBN :
978-1-4673-1534-0
Type :
conf
DOI :
10.1109/ICWAPR.2012.6294765
Filename :
6294765
Link To Document :
بازگشت